If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-80x-240=0
a = 1; b = -80; c = -240;
Δ = b2-4ac
Δ = -802-4·1·(-240)
Δ = 7360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7360}=\sqrt{64*115}=\sqrt{64}*\sqrt{115}=8\sqrt{115}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-8\sqrt{115}}{2*1}=\frac{80-8\sqrt{115}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+8\sqrt{115}}{2*1}=\frac{80+8\sqrt{115}}{2} $
| 2x-8)+(3x-7)=180 | | 3x2-7=41 | | 21-7w=-7 | | 0.7f=0.49 | | (2x-8)(x+16)=0 | | 5=16-22n | | x^2-80x-560=0 | | √(k+3)^3=27 | | 8=-7p+15 | | n=-9^2 | | -6v+15=27 | | -3+7m=-38 | | 3^4n=-6 | | 5x+-3=4x+-6 | | (k+3)^3/2=27 | | 1/2(2c-5)+3=7 | | 0.75x8=6 | | (k+3)3/2=27 | | 0.75x6=8 | | 2c-5+3=7 | | 1x+2x+3x=55+5x | | -11x+19x+20=4 | | 17x-6-14x=12 | | x/3+1/3=9 | | (-2x+5)-(3x+4)=3x+5 | | y^2+12y+85=0 | | 35m^2-5m=0 | | 3x-2(x-8)=3+4(1-2x) | | x2-9x+4=0 | | x/6=2=9 | | x+(3x-5)=7 | | 2(3x-1)+5=x |